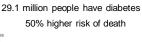
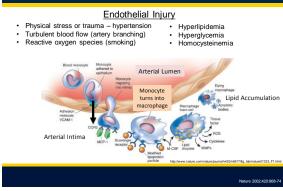
Should Empagliflozin and Liraglutide be Included in Cardiovascular Guidelines?


Sarah Hanigan, PharmD, BCPS

Objectives

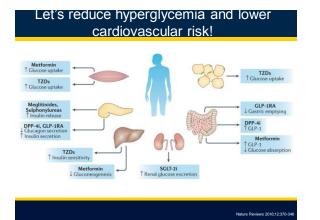
- Describe the cardiovascular benefits of empagliflozin and liraglutide
- Design a regimen for a patient with diabetes and cardiovascular disease that optimizes care of both disease states

Cardiovascular disease is the leading cause of death in diabetes

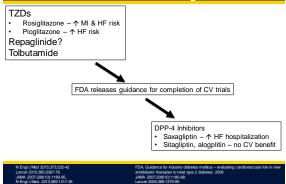


CDC Dial

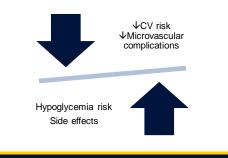
Pathogenesis of atherosclerosis

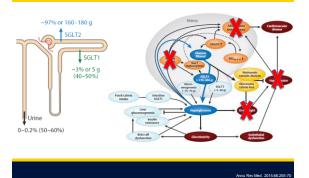


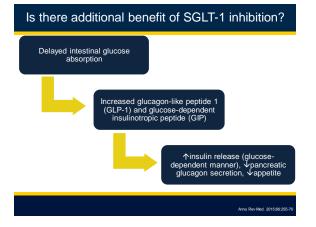
Hyperglycemia promotes atherosclerosis


- · DM accelerates the natural time course of atherosclerosis involving greater number of vessels and diffuse disease
- ٠ Glycosylation of proteins to form advanced glycosylation end products (AGEs)
 - Impaired clearance of low-density lipoprotein (LDL), increased recognition by macrophages \rightarrow foam cell formation
 - Increased endothelial cell permeability and smooth muscle cell • proliferation
- · Formation of reactive oxygen species

Current recommendations for glycemic goals: A1c < 7%


- Lower HbA1c = ψ microvascular complications ٠ Can consider targeting A1c <6.5%
- More intensive treatment in newly diagnosed patients may reduce long-term CVD rates
 - UKPDS \downarrow MI & SCD in intensive glycemic control arm (p=0.052) 10-year observational f/u significant \downarrow MI and all-cause mortality
 - •
- Intensive treatment in patients with advanced DM is controversial - consider less stringent goal?
 - ACCORD increased CV mortality and all-cause mortality
 - ADVANCE no evidence of benefit or harm
 - VADT - reduction in CV events but not mortality


However, antidiabetic agents should not be considered interchangeable



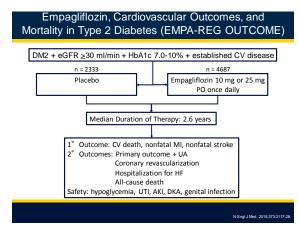
Need safe and efficacious therapy

Sodium Glucose Transporter – 2 (SGLT-2)

Empagliflozin is the 3rd agent to become available in this class

- · SGLT-2 inhibition only
- Dosing: 10 mg once daily, can increase to 25 mg
 CrCl 30-45 ml/min: Not recommended for use
 - CrCl < 30 ml/min: Contraindicated
- Lowers A1c ~0.5-0.8%
- SBP reduction ~3-5 mmHg
- Weight loss ~1-2 kg
- · Others: dapagliflozin, canagliflozin

What factors may limit blood glucose lowering effect of SGLT2 inhibitors?

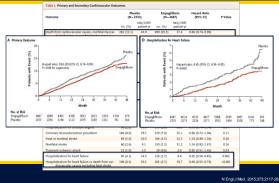

- Increased endogenous glucose production (likely hepatic gluconeogenesis)
- Reduced GFR (less filtered glucose)
 - Canagliflozin and empagliflozin reduce A1c in GFR as low as 30 mL/min/1.73m²
 - Small reduction in GFR in CKD stage 3 patients, but also reduction in albuminuria
 - Increased adverse events and no reduction in A1c in CKD stage 4

Annu Rev Med. 2015;66:2 Diabetes Endocrinol 2014;2:3

Safety concerns with SGLT-2 inhibitors

- · Urinary tract infections
- Fungal genital infections
- Ketoacidosis
- Hypotension/Volume depletion
- Increased LDL

Jardiance [package insert] Boehringer Ingleheim, Inc; 20 Lancet 2014;2:369



between groups			
	Placebo (%)	Empagliflozin - Pooled (%)	
Age, years ± SD	63.2 ± 8.8	63.1 ± 8.6	
Race White Asian Black/African-American	1678 (71.9) 511 (21.9) 120 (5.1)	3403 (72.6) 1006 (21.5) 237 (5.1)	
CAD MI CABG Stroke PAD	1763 (75.6) 1083 (46.4) 563 (24.1) 553 (23.7) 479 (20.5)	3545 (75.6) 2190 (46.7) 1175 (25.1) 1084 (23.1) 982 (21.0)	
Glycated Hernoglobin, %	8.08 ± 0.84	8.07 ± 0.85	
Time since diagnosis of DM <5 years 5-10 years >10 years	423 (18.1) 571 (24.5) 1339 (57.4)	840 (17.9) 1175 (25.1) 2672 (57.0)	
Metformin Insulin Sulfonylurea Monotherapy	1734 (74.3) 1135 (48.6) 992 (42.5) 691 (29.6)	3459 (73.8) 2252 (48.0) 2014 (43.0) 1380 (29.4)	
ACEI/ARB Statin Acetylsalicylic Acid	1868 (80.1) 1773 (76.0) 1927 (82.6)	3798 (81.0) 3630 (77.4) 3876 (82.7)	
Systolic blood pressure, mmHg Low-density lipoprotein, mg/dL High-density lipoprotein, mg/dL Estimated GFR, ml/min/1.73m ²	135.8 ± 17.2 84.9 ± 35.3 44 ± 11.3 73.8 ± 21.1	135.3 ± 16.9 85.9 ± 36.0 44.6 ± 11.9 74.2 ± 21.6	

Baseline characteristics were well balanced	J
between groups	

Empagliflozin significantly reduced the primary CV outcome compared to placebo

Table S5. Categories of ca	rdiovascular dea	ath.		
	Placebo	Empagliflozin	Empagliflozin	Pooled
	(N = 2333)	10 mg	25 mg	empagliflozin
		(N = 2345)	(N = 2342)	(N = 4687)
		no	o. (%)	1
Patients with cardiovascular death	137 (5.9)	90 (3.8)	82 (3.5)	172 (3.7)
Sudden death	38 (1.6)	30 (1.3)	23 (1.0)	53 (1.1)
Worsening of heart failure	19 (0.8) 🖌	7 (0.3)	4 (0.2)	11 (0.2)
Acute myocardial infarction	11 (0.5)	6 (0.3)	9 (0.4)	15 (0.3)
Stroke	11 (0.5)	9 (0.4)	7 (0.3)	16 (0.3)
Cardiogenic shock	3 (0.1)	1 (<0.1)	2 (0.1)	3 (0.1)
Other cardiovascular death*	55 (2.4)	37 (1.6)	37 (1.6)	74 (1.6)
Includes fatal cases that were n cardiovascular deaths as per cor			nation and were pre	sumed to be
Hospitalization for heart failure Hospitalization for heart failure or de	95 (4.1) rath from car- 198 (8.5)	14.5 126 (2.7) 30.1 265 (5.7)	9.4 0.65 (0.50-0.85) 19.7 0.66 (0.55-0.79)	0.002

The primary outcome was driven by a reduction in CV death

Increased incidence of urinary tract infections in females and genital infections with empagliflozin

Table 2. Adverse Events.*				
Event	Placebo (N = 2333)	Empagliflozin, 10 mg (N=2345)	Empaglificzin, 25 mg (N = 2342)	Pooled Empagliflozin (N=4687)
		number of pa	tients (percent)	
Any adverse event	2139 (91.7)	2112 (90.1)	2118 (90.4)	4230 (90.2)†
Severe adverse event	592 (25.4)	536 (22.9)	564 (24.1)	1100 (23.5)‡
Serious adverse event				
Any	988 (42.3)	876 (37.4)	913 (39.0)	1789 (33.2)†
Death	119 (5.1)	97 (4.1)	79 (3.4)	176 (3.8)§
Adverse event leading to discontinuation of a study drug	453 (19.4)	416 (17.7)	397 (17.0)	813 (17.3)5
Confirmed hypoglycemic adverse event¶				
Any	650 (27.9)	656 (28.0)	647 (27.6)	1303 (27.8)
Requiring assistance	36 (1.5)	33 (1.4)	30 (1.3)	63 (1.3)
Event consistent with urinary tract infection	423 (18.1)	426 (18.2)	416 (17.8)	842 (18.0)
Male patients	158 (9.4)	180 (10.9)	170 (10.1)	350 (10.5)
Female patients	265 (40.6)	246 (35.5)	246 (37.3)	492 (36.4) \$
Complicated urinary tract infection**	41 (1.8)	34 (1.4)	48 (2.0)	82 (1.7)
Event consistent with genital infection ††	42 (1.8)	153 (6.5)	148 (6.3)	301 (6.4)†
Male patients	25 (1.5)	89 (5.4)	77 (4.6)	166 (5.0)†
Female patients	17 (2.6)	64 (9.2)	71 (10.8)	135 (10.0)†
Event consistent with volume depletion:::	115 (4.9)	115 (4.9)	124 (5.3)	239 (5.1)
Acute renal failure§§	155 (6.6)	121 (5.2)	125 (5.3)	246 (5.2)§
Acute kidney injury	37 (1.6)	26 (1.1)	19 (0.8)	45 (1.0)\$
Diabetic ketoacidosis¶¶	1 (<0.1)	3 (0.3)	1 (<0.1)	4 (0.1)
Thromboembolic event§§	20 (0.9)	9 (0.4)	21 (0.9)	30 (0.6)
Bone fracture	91 (3.9)	92 (3.9)	87 (3.7)	179 (3.8)

How did empagliflozin have such an immediate impact on outcomes?

Hemodynamic Hypothesis

- BP reduction
- · Osmotic diuresis and natriuresis
 - Reduction in vascular pressure, ventricular preload and afterload
 Support: 5%¹ HCT similar time course of events with residitazona
 - Support: 5%1 HCT, similar time course of events with rosiglitazone except opposite effect (increased volume and HF exacerbation)

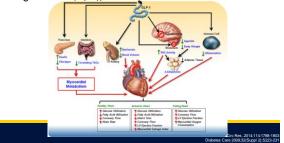
Other

- Cardiorenal protection
 - ↑Glucagon
 - Inotropic actions
 - Regulation of myocardial glucose uptake
 - Anti-arrhythmic action

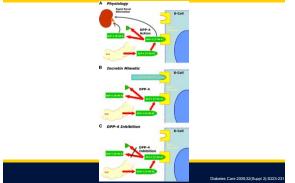
N Engl J Med. 2015;373:21

Who would most likely benefit? (Cardiovascular risk reduction)

Type 2 diabetes with A1c greater than 7.0% • Majority had diabetes greater than 5 years


- + Established CV disease
 - Known CAD (>50% stenosis), history of ACS, stroke, or PAD
- + Combination therapy w/ other anti-diabetic agents
 . Monotherapy?

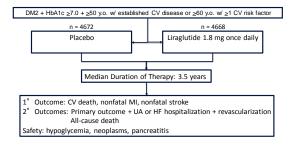
Should empagliflozin be added to heart failure guidelines?


- · Sudden death and worsening heart failure helped drive the reduction in CV death but the majority of reduction was labeled "other" CV death
- Significant reduction in HF hospitalizations •
- Questions from EMPA-REG OUTCOME # of HF patients HFrEF versus HFpEF
 - •
- · Need future trials in heart failure patients!

Incretin hormones are part of normal physiology

- Released from gut endocrine cells
- · Potentiate meal-stimulated insulin secretion, slow gastric emptying

Endogenous administration or degradation inhibition to augment incretin actions

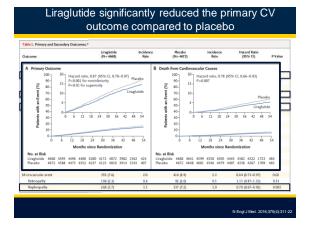

Liraglutide is a GLP-1 receptor agonist

- Longer half-live than endogenous GLP-1
- Dosing: 0.6 mg inject subcutaneously once daily, titrate to 1.8 mg once daily

Advantages	Disadvantages
Lowers A1c ~0.4-1.2%	Significant N/V/D
Reduces SBP ~2-8 mmHg	Unclear relationship w/ pancreatitis
Reduces TG ~15-20%	Potential for anti-liraglutide antibodies
Weight loss ~2-3 kg	Subcutaneous dosing only

Diabetes Care 2007;30(6):1608 Diabetes Care 2009;32(Suppl 2):S223

Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes (LEADER Trial)



I Engl J Med. 2016;375(4):31

	Liraglutide (%)	Placebo (%)
Age, years ± SD	64.2 ± 7.2	64.4 ± 7.2
CVD risk factors (Age ≥60) Microalbuminuria/Proteinuria HTN + LV hypertrophy LV systolic or diastolic dysfunction	1678 (71.9) 511 (21.9) 120 (5.1)	3403 (72.6) 1006 (21.5) 237 (5.1)
Established CVD (Age ≥50) MI Revascularization Stroke CKD	3831 (82.1) 1464 (31.4) 1835 (39.3) 730 (15.6) 1185 (25.4)	3767 (80.6) 1400 (30.0) 1803 (38.6) 777 (16.6) 1122 (24.0)
Glycated Hemoglobin, %	8.7 ± 1.6	8.7 ± 1.5
Diabetes duration, years	12.8 ± 8.0	12.9 ± 8.1
Metformin Insulin Sulfonylurea Monotherapy	3540 (75.8) 2038 (43.7) 2370 (50.8) 691 (29.6)	3604 (77.1) 2131 (45.6) 2362 (50.6) 1380 (29.4)
ACEI/ARB BB Statin Acetylsalicylic Acid	3905 (83.7) 2652 (56.8) 3405 (72.9) 2977 (63.8)	3836 (82.1) 2529 (54.1) 3336 (71.4) 2899 (62.1)
Systolic blood pressure, mmHg eGFR >90 60-89 30-59 <30	135.9 ± 17.8 1620 (34.7) 1932 (41.4) 999 (21.4) 117 (2.5)	135.9 ± 17.7 1655 (35.4) 1975 (42.3) 935 (20.0) 107 (2.3)

Baseline characteristics were well balanced between groups

Increased incidence of adverse events and GI side effects with liraglutide

Table 2. Selected Adverse Events Reported during the Tria	d.*		
Event	Lingfutide (N = 4668)	Placebo (N = 4672)	P Value
	no. of pa	vents (%)	
Adverse event			
Any advense event	2909 (62.3)	2839 (60.8)	0.12
Serious adverse event	2320 (49.7)	2354 (50.4)	0.51
Confirmed hypoglycemia+	2039 (43.7)	2130 (45.6)	0.06
Severe adverse event	1502 (32.2)	1533 (32.8)	0.51
Severe hipoglycemiat	114 (2.4)	153 (3.3)	0.02
Acute galistone disease	145 (3.1)	90 (1.9)	< 0.001
Cholelithiasis	68 (1.5)	50 (1.1)	0.09
Acute cholecestitis Adverse event leading to permanent discontinuation of trial regimen	36 (0.8)	21 (0.4)	0.046
Any adverse event	444 (9.5)	339 (7.3)	<0.001
Serious adverse event	192 (4.1)	245 (5.2)	0.01
Severe adverse event	164 (3.5)	188 (4.0)	0.20
Nausea	77 (1.6)	18 (0.4)	<0.001
Vomiting	31 (0.7)	2 (<0.1)	<0.001
Diarrhea	27 (0.6)	5 (0.1)	<0.001
Increased lipase level:	15 (0.3)	11 (0.2)	0.43
Abdominal pain	11 (0.2)	3 (0.1)	0.03
Decreased appetite	11 (0.2)	2 (<0.1)	0.01
Abdominal discomfort	10 (0.2)	0	0.002
Pancreatitis or neoplasm§			
Acute pancreatitis	18 (0.4)	23 (0.5)	0.44
Chronic pancreatitis	0	2 (<0.1)	0.16
Any benign neoplasm	168 (3.6)	145 (3.1)	0.18
Any malignant neoplasm	295 (6.3)	279 (6.0)	0.46
Pancreatic carcinoma	13 (0.3)	5 (0.1)	0.06
Medullary thyroid carcinoma	0	1 (c0.1)	0.32

How does the impact of liraglutide on outcomes compare to empagliflozin?

- Time to benefit emerged later with liraglutide more related to reduction in atherosclerotic risk?
- Less heterogeneity in direction and impact on the components that make up the primary outcome
 - Numerically higher rates of stroke and no effect on nonfatal MI with empagliflozin
 - Consistent trends in reduction of stroke and MI with liraglutide
- Increased rates of discontinuation and adverse events with liraglutide

N Engl J Med. 2016;375(4):3

Who would most likely benefit? (Cardiovascular risk reduction)

Type 2 diabetes with A1c greater than 7.0% • Majority had long-standing diabetes

- + Established CV disease
 - Known CAD, history of ACS, revascularization, stroke, PAD, or CKD
 Significant risk reduction not seen in those with CV risk factor only
 - Significant risk reduction not seen in those with CV risk factor only
- + Combination therapy w/ other anti-diabetic agents
 . Monotherapy?

Is the cardiovascular benefit consistent across the medication class of GLP-1 receptor agonists?

- · Lixisenatide
 - DM2 + ACS in preceding 180 days
 - No significant differences compared to placebo in any CV endpoint Mean HbA1c = 7.6 ± 1.3 ; lower weight and BMI; higher rates of ACEI,
 - Mean HbA1c = 7.6 ± 1.3; lower weight and BMI; higher rates of ACEI, BB, statin, antiplatelet use
- Semaglutide
 - Same inclusion criteria as LEADER Trial, smaller trial
 - Baseline characteristics similar to patients in the LEADER Trial
 - CV death, MI, stroke: 6.6% (S) v. 8.9% (P), 0.74 [0.58-0.95] p=0.02
 - Increased risk of retinopathy compared to placebo
- · CV trials with exenatide and dulaglutide are ongoing

N Engl J Med. 2016;375:1834 N Engl J Med. 2015;373:2247

n 2015;132:00

2015 AHA/ADA Scientific Statement – Update on prevention of CV disease in adults with DM2

"To date, there are no convincing data to suggest that any single type of antihyperglycemic therapy in type 2 diabetes mellitus has a CVD advantage over another other than perhaps metformin."

Consider efficacy in glycemic control, adverse effects, cost and quality of life when selecting therapies

11

American Diabetes Association – Standard of medical care in diabetes 2017 Section 8. Pharmacologic Approaches to Glycemic Treatment

American Diabetes Association – Standard of medical care in diabetes 2017

Section 9. Cardiovascular Disease and Risk Management

- · Diet and lifestyle modifications
- Hypertension
 - BP management w/ ACEI, ARB, thiazide, or DHP CCB to goal <140/90 or can consider 130/80 mmHg
- Lipid Management
- High intensity statin for patients 40-75 y.o. with CV disease
 Antiplatelet Agents
 - Aspirin for secondary prevention of CV events and primary prevention in those with risk factors
- Coronary Heart Disease
 - Aspirin, statin, ACEI
 - BB post-MI
 - Avoid use of thiazolidinedione in HF

Should empagliflozin and liraglutide be included in cardiovascular guidelines?

- In patients with DM2 and CV disease who are not at goal HbA1c, use liraglutide as part of combination therapy to reduce CV events
- In patients with DM2 and CV disease who are not at goal HbA1c, use empagliflozin as part of combination therapy to reduce CV events

Agent selection considerations: liraglutide v. empagliflozin				
	Liraglutide	Empagliflozin		
Place in therapy for patients w/ CV disease	Use as part of combination therapy to reduce CV events	Consider use as part of combination therapy to reduce CV events		
Effect on CV risk factors	Reduction in weight, small reduction in SBP, increase in HR	Small reductions in weight, waist circumference, uric acid level, SBP and DBP. Small increases in LDL and HDL		
Adverse effects	Nausea, vomiting, pancreatitis? (unclear)	UTI, genitourinary fungal infections, unusual DKA		
1° outcome – CV death, nonfatal MI and stroke	↓Primary outcome ↓CV death Trend ↓ MI and stroke	↓Primary outcome ↓CV death ↔ MI and stroke		
Other benefits	Lower risk of hypoglycemia	than sulfonylureas and insulin Benefit in HF patients?		
Limitations	Subcutaneous dosing only \$831/mo.	Contraindicated GFR < 30 ml/min \$470/mo.		

Questions that remain...

- · Younger patients with a shorter duration of diabetes
- · Patients without clinically evident CV disease (empagliflozin)
- · CV outcomes with other SGLT-2 inhibitors

References

- •
- ADA, AHA, ACC Statement. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Tinal. Diabetes Care 2009;32(1):187-92. AH4/ADA Scientific Statement. Update on prevention of cardiovascular disease in adultes with type 2 diabetes mellitus in fight of recent evidence. Circulation 2015;13:2000-000. Aronson D and Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;11.1. BarnettAH, Mithal A, Manassie J, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 dabetes and chronic kidney disease: a randomized, double-bind placebo-controlled trial. Lance Diabetes Endcorrinol 2014;2:309-44. Dormand J. A. Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 dabetes meltitus evaluating cardiovascular risk in new antidiabetis (therapies to treat type 2 diabetes. Washington, DC:US Department of Health and Human Services;2008. Greeg JB, Bettel A, Armstrong PW, et al. Effect of sitagiptin on cardiovascular outcomes in type 2 diabetes, N.Eng J. Med;2015;373:222-42. Greeg EW, Yanfeng L, Wang J, et al. Changes in diabetes related complications in the United States, 1990-2010. N.Eng J. Med;370:1514-23. Libby P. Inflammation in atheroscherosis. Nature 2002;420:868-874. Lincoft AM, Wolski K, Nichols SJ, Nissen SE; Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes relitus. JAMA 2015;298(1):1180-88. Marso SP, Bain SC, Consoli A, et al. Sernagluide and cardiovascular outcomes in patients with type 2 diabetes mellitus. JAMA 2016;298(1):1180-88. Marso SP, Bain SC, Consoli A, et al. Sernagluide and cardiovascular outcomes in patients with type 2 diabetes N. Eng J Med. 2016;375:183-44. •
- .
- .
- •
- •
- :

References

- Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311-22. McMurray J. EMPA-REG the duretic hypothesis. J Diabetes Complications. 2016;30(1):3-4. Nauck MA, Vilsboll T, Gallwitz B, et al. Incretin-based therapies. Diabetes Care 2009;32(Suppl 2):S223-S231. . •

- .
- .
- S231. Pleffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and source coronary synchrome. N Engl J Med 2015;373:2247-57. Rajasekeran H, Lyvyn Y and Cherney DZ. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney International 2016;89:524-526. Scrinca BM, Bhatt DL, Braurwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;98:1137-26. Singh S, Loke YK and Furberg CD. Long-term risk of cardiovascular events with rosigitiazone. JAMA 2007;298(10):1189-95. UKPDS Group. Intensive blood-glucose control with suphonytureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:387-63. •
- 1998;32:23:23:37 Ussher JR and Ducker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;14:1789-1803. Valino V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev . Valion V., The mechanisms and therapeutic polential of SGL12 inflictors in cladeles mellitics. A Med. 2015;662:557.0. Jardiance [Package Insert]. Ridgefield, CT. Boehringer Ingelheim Pharmaceuticals, Inc; 2016 Victoza [Package Insert]. Plainsboro NJ. Novo Nordisk; 2016
- .

References

- Vilsboll J, Zoravkovic M, Le-Thi T, et al. Liraglutide, a long-acting human glucoagon-like peptide-1 analog, given as monotherapy significantly improved glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 2007;30(6):1080-10. Zannad F, Cannon CP, Cushman WC, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking adolptin versus placebo in EXAMINE: a multicentre, randomized, double-blind threal. Lancet 2015;385:2087-76. Zhou K, Pederson HK, Dawed AY, and Pearson ER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nature Reviews 2016;12:337-46. Zimman B, Wanner C, Lachin JM, et al. Empaglifozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117-28.
- .